

Introducción al uso de sistemas de protección sísmica

Diseño de estructuras equipadas con disipadores histeréticos

MI. José Ernesto García Mora Pinto

Temario

Sesión 1: Sesión teórica

- Conceptos fundamentales
- Parámetros de diseño CRP
- Caracteristicas de disipación
- Recomendaciones de configuración de CRP
- Normas Técnicas Complementarias CDMX Sismo 2023
- Metodología de prediseño

n uración de CRP entarias CDMX Sismo 2023

Conceptos fundamentales

¿Qué es un disipador de energía?

Amortiguadores de carro

Instalación eléctrica

Objetivos de la instalación de disipadores

Reducción de **costos** totales en la estructura Mejorar el **comportamiento** estructural Análisis y diseño más detallado del proyecto para una mayor **certidumbre** Mayor **seguridad** y **confort** para el usuario

Disipadores Activados por desplazamiento

Tipos principales:

- Disipadores Metálicos \bullet Comportamiento histerético de los metales deformados plásticamente
- Disipadores de fricción \bullet Fricción en la interface de dos cuerpos solidos

Desplazamiento (mm)

- Contraviento/Contraventeo lacksquare
- Dispositivo histerético \bullet
- Disipador de energía \bullet
- **Fusible estructural** \bullet

¿Qué es un Contraviento restringido a pandeo (CRP)?

Disipador histerético tipo CRP

Funda

Pruebas experimentales en México, UNAM (2018)

Desplazamiento axial, mm

DAMPO

El disipador Dampo 1505 es un disipador tipo histerético ligero, conformado por un arreglo de placas que le permite acomodar desplazamientos muy grandes y de manera estable

DAMPO

Validación adicional en modelos computacionales

Colocación del disipador Dampo 1505

Colocación del disipador Dampo 1505

Parámetros de diseño de CRP

Parámetros de diseño

Rigidez del disipadorEsfuerzo de fluenciaLongitud del disipador K_{BRB} f_{ye} L_{BRB}

- Esfuerzo de fluencia esperado $f_{ye} = f_y * R_y$
- Cociente del esfuerzo de fluencia R_y
- R_y -> Depende del tipo de acero utilizado y el elemento fabricado (placa, perfil, tubo, etc.)
- Referencia de valores de R_y : NTC DCEA 2020 Tabla 12.1.1

Geometría del BRB

Área del núcleo Espesor de la placa

$$A_c = \frac{P_y}{f_{ye}}$$

Relación de anchos

 $B_e > B_c$

Ancho del núcleo

 $B_c = \frac{A_c}{t}$ t

Relación de longitudes

 $L_c + 2 * L_e = L_{BRB}$

Rigidez del BRB

La rigidez de un BRB se puede obtener como si fuera un resorte en serie (rigidez de extremos y de zona central)

Rigidez del BRB

P d_e

Compatibilidad de deformaciones

 $d = d_e + d_c + d_e$

$$\frac{1}{k_{BRB}} = \frac{1}{k_e} + \frac{1}{k_c} + \frac{1}{k_e}$$

$$fk = \frac{k_{BRB}}{k'} \qquad \qquad k_{BRB} = k' * fk$$

1.1 < fk < 1.5

Se busca calcular la rigidez con un método más sencillo usando el factor fk

$$k' = \frac{EA_c}{L} \qquad \qquad k_{BRB} = \frac{EA_c}{L} * fk$$

fk = 1.3

Desplazamiento de fluencia y ductilidad

Desplazamiento de fluencia

$$u_y = \frac{P_y}{k_{BRB}}$$

Desplazamiento (mm)

Ductilidad esperada del BRB

 γ = Distorsión de entrepiso $\Delta_x = \gamma * H$; $L = \frac{H}{seno(\alpha)}$; $L_{BRB} \approx 0.8$

 $u = \Delta_x \cos(\alpha)$

*
$$\frac{H}{seno(\alpha)}$$
 $\mu = \frac{E * fk * \gamma}{0.8 * f_{ye}} * \cos(\alpha) * seno(\alpha)$

Fuerzas máximas en tensión y compresión

Desplazamiento (mm)

Fuerza última a tensión

Fuerza última a compresión

$$T_{max} = \omega F_{ye} A_c$$

 $P_{max} = \omega\beta F_{ye}A_c$

 T_{max}

40

Sobrerresistencia: Endurecimiento por deformación Fricción con la funda Efecto de Poisson

$$\omega = \frac{T_{max}}{P_y} > 1 \approx 1.3$$

$$\beta = \frac{P_{max}}{T_{max}} > 1 \approx 1.15$$

 ω = Factor de ajuste a tensión

 β = Factor de ajuste a compresión

$$P_y$$
 =Fuerza de fluencia

Propiedades de modelado

Desplazamiento (mm)

Para modelar numéricamente el comportamiento de los BRB, se utiliza el modelo de Bouc-Wen que utiliza los parámetros de $P_v y K_{BRB}$

Adicionalmente se calcula un parámetro que relaciona la rigidez postfluencia con la rigidez elástica.

Para realizar el ajuste se simplifica el comportamiento a un modelo bilineal conel método del FEMA 356

$$r = \frac{k_2}{k_1}$$

Comportamiento del sistema dual

DAMPO

Comportamiento del sistema dual

Caracteristicas de disipación

Fuerza, t

Protocolo de carga

ANSI/AISC 341-16

Tiempo (s)

• Protocolo de carga controlado por desplazamientos según lo recomienda el estándar

Ciclos de histeresis

Desplazamiento (mm)

Envolvente de ciclos histeréticos

Desplazamiento (mm)

Parámetros de fluencia

Desplazamiento (mm)

 Δ_{pi}^{-}

Energía acumulada Tiempo (s)

DAMPO

Ductilidad acumulada

DAMPO

Calibración de modelos numéricos

Parámetros principales de calibración:

- Valores de fuerza para la historia de desplazamiento
- Energía acumulada

Recomendaciones de configuración de CRP

Geometrías alargadas con posibilidad de pocos marcos reforzados

Crujías con ángulos de inclinación muy altos

Crujías con columnas con baja resistencia con disipadores de alta capacidad (La columna requerirá refuerzo)

Asimetría en la distribución en planta

Pisos sin elementos de resistencia lateral (Piso débil)

Debido a que su capacidad es casi simétrica, **no** es necesario que los BRB se coloquen alternadamente para que unos trabajen en tensión y otros en compresión.

Entre mayor sea la inclinación de un BRB será menos efectivo

Se recomienda que los contraventeos formen un ángulo θ comprendido entre 30 y 60 grados respecto a la horizontal (figura 12.3.10

Figura 12.3.10Configuraciones permitidas de contraventeos concéntricos restringidos contra el pandeo: a) en V; b)

Figura 12.3.10 de las NTC – DCEA 2020

en V invertida; c) y d), en diagonal sencilla; e) en X en dos niveles

Posible distribución de BRB

Eje A y E DAMPO

Mejor distribución de descarga la cimentación

Posible distribución de BRB

Eje 4 y 1

Eje A y E DAMPO

Posible distribución de BRB

Propuesta de ubicación en planta de *Dy4* BRB Posible distribución de BRB

BRB

Posible distribución de BRB

BRB

Posible distribución de BRB

Diafragmas rigidos

- Se debe verificar que los diafragmas de piso transmitan las fuerzas a los BRB.
- Cuidar la distribución de rigidez en planta para tener desplazamientos laterales constantes
- El diafragma de piso deberá RESISTIR demandas sísmicas.

Normas Técnicas Complementarias para diseño por sismo para la Ciudad de México

Tabla 1.1a Matriz de objetivos de diseño para estructuraciones convencionales ^[1]

Intensided		Niveles de Desempeño				
Intensidad	Periodo de	No Estructural	No Estructural Estructural			
Diseño ^[2]	Retorno ^[3]	Limitación de Daño ^[4]	Ocupación Inmediata [6]	Seguridad de Vida	Prevención de Colapso	
Frecuente	Mayor o igual que 20 años	 Grupo B. Revisión de distorsiones ^[5] 	No se permite	No se permite	No se permite	
Base de Diseño	Mayor o igual que 250 años		 Grupo A. Revisión de distorsiones y diseño por resistencia, Q = 1 [7] 	 Grupo B. Revisión de distorsiones y diseño por resistencia, Q > 1 ^[8] 	No se permite	
Infrecuente	Mayor o igual que 475 años			5) Grupo A. Revisión de distorsiones y diseño por resistencia, $Q > 1^{[8]}$	 Grupo B. Revisión optativa con evaluación basada en desempeño ^[9] 	

Tabla 3.1.1 Determinación de espectros de diseño para los objetivos de diseño contemplados por esta Norma [1]

Intensidad	Niveles de Desempeño				
Sísmica de	No Estructural Estructural				
Diseño ^[2]	Limitación de Daño	Ocupación Inmediata	Seguridad de Vida	Prevención de Colapso	
Frecuente	 Espectro elástico de S_a para intensidad sísmica base de diseño multiplicado por K_s ^[3] 				
Base de Diseño		4 y 6) Espectro elástico de Sa para intensidad sísmica base de diseño dividido por $R' = 0.75R (Q = 1)$ ^[4]	 Espectro elástico de Sa para intensidad sísmica base de diseño dividido por Q' (Q > 1) y R' = R^[5] 		
Infrecuente		7) Espectro elástico de S_a para intensidad sísmica infrecuente ^[6]	5) Espectro elástico de S_a para intensidad sísmica infrecuente dividido por $Q'(Q > 1)$ y $R' = R^{[5]}$	 Evaluación basada en desempeño con acelerogramas ^[7] 	

·		· · · ·	×.		
Estructuración	Ductilidad	Condición	Q	γsv	γοι
	Alta	Muros de placa de acero rellena de concreto de ductilidad alta	4.0	0.020	0.0050
	Alta	Muros compuestos de ductilidad alta	4.0	0.020	0.0050
vi) Sistema dual [a], [b] formado por	Alta	Muros de placa de acero de ductilidad alta	4.0	0.020	0.0050
marcos compuestos y muros [2], [4]	Alta	Muros de concreto reforzado de ductilidad alta	4.0	0.020	0.0050
	Media	Muros de concreto reforzado de ductilidad media	3.0	0.015	0.0050
	Baja	Muros de concreto reforzado de ductilidad baja	2.0	0.010	0.0050
vii) Columnas de acero compactas en voladizo, sin o con relleno de concreto	Baja	Columnas de ductilidad baja	1.5	0.009	0.0075
viii) Sistema suspendido soportado por un núcleo de acero formado por muros o marcos	Media	Con marcos o muros de placa de acero de ductilidad alta	3.0	0.015	0.0050
ix) Marcos exteriores y columnas	Media	Marcos exteriores de ductilidad media	3.0	0.020	0.0075
interiores interconectados por diafragmas horizontales rígidos ^[6]	Baja	Marcos exteriores de ductilidad baja	2.0	0.015	0.0075
x) Sistema <i>Diagrid</i>			1.0		V ^{SP} [7]
 xi) Sistema con disipadores de energía ^{[8],} ^[9] 			1.0		γ ^{SP} ₀₁ ^[10]
 xii) Sistema estructural con aislamiento sísmico 			1.0		$\gamma_{OI}^{SE[11]}$

Tabla 4.3.2 Factores de comportamiento sísmico y distorsiones límite para estructuras de acero y compuestas ^[1] (continuación)

- [8]se debe llevar a cabo conforme a lo indicado en el Capítulo 12.
- Para la evaluación y rehabilitación de estructuras de con contraventeos restringidos contra el pandeo se cumplirán los requisitos de la NTC-Evaluación y Rehabilitación. [9]
- En caso de sistemas que utilicen disipadores de energía, todo el sistema deberá diseñarse para satisfacer el nivel de desempeño de Ocupación Inmediata. El valor γ_{0I}^{SP} corresponde al valor γ_{0I} del [10] sistema primario indicado en la tabla 4.3.2 de conformidad con los criterios del Capítulo 12.

Los contraventeos restringidos contra el pandeo deben ser considerados como disipadores de energía, por lo que no podrán ser diseñados como contraventeos convencionales. Su análisis y diseño

SISTEMAS ESTRUCTURALES CON DISIPADORES DE ENERGÍA 12.

12.1 General

Este Capítulo debe aplicarse al diseño sísmico de edificios con disipadores de energía; se incluyen en esa acepción las naves industriales y las obras fabriles con estructuración similar a la de los edificios.

12.1.1 Propósito y alcance

De acuerdo con lo indicado en la tabla 12.1.1, los requisitos de esta Norma tienen como propósito obtener una estructura con disipadores de energía que exhiba un comportamiento adecuado tal que satisfaga el siguiente objetivo de diseño:

a) Β.

Además de cumplir con lo especificado en este Capítulo, el diseño de un sistema estructural con disipadores de energía debe contar con aprobación del Instituto, y debe cumplir con las disposiciones de la NTC-Revisión en lo referente a la revisión del proyecto estructural.

Tabla 12.1.1 Matriz de objetivos de diseño para esti deturas con disipadores de energia					
	Niveles de Desempeño ^[1]				
Intensidad Sísmica	No Estructural	Est	ructural		
de Diseño ^[1]	Limitación de Daño	Ocupación Inmediata	Seguridad de Vida	Prevención de Colapso	
Frecuente					
Base de Diseño		 6) Estructuras con disipadores de energía. Revisión de distorsiones y diseño por resistencia (Q = 1) 			
Infrecuente					

Tabla 12-1-1 Matriz de objetivos de diseño nara estructuras con disinadores de energía

^[1] De acuerdo con lo indicado en 1.1 y la tabla 1.1a.

Para la intensidad sísmica base de diseño, se limite la respuesta de los elementos estructurales del sistema primario de tal manera que satisfaga el nivel de desempeño de Ocupación Inmediata. Los disipadores de energía deben diseñarse y fabricarse para permanecer con daño controlado de acuerdo con los criterios establecidos en el Apéndice

12.1.2.5 Acciones mínimas de diseño

Independientemente de si el edificio pueda analizarse, de acuerdo con 12.2.1, con el método estático, debe llevarse a cabo un análisis estático en conformidad con lo indicado en 12.2.1.1 para establecer las acciones mínimas de diseño que se indican en la tabla 12.1.2.

Fabla 12.1.2 Acciones mínimas de diseño	o y distorsiones l	límite para sistemas (estruct
---	--------------------	------------------------	---------

Dauána da Diasão	Análisis	Análisis Modal Espectral Estructura Regular ^[1] Irregular ^[1]		Análisis Dinámico Paso a Paso		
Parametro de Diseno	Estático			Estructura Regular ^[1]	Estructura Irregular ^[1]	
Cortante basal	V _{bD} ^[2]	0.8 V _{bD}	V _{bD}	0.6 V _{bD}	0.8 V _{bD}	
Distorsión límite	<i>γοι</i> ^[3]	1.1 γ <i>οι</i>	γοι	1.5 γοι	1.2 γοι	

^[1] Conforme a lo indicado en 12.1.3.3.1

12.1.3.3.1 Acciones de diseño

La estimación de las acciones de diseño sobre el sistema estructural con disipadores debe considerar la regularidad estructural. El sistema estructural se clasifica como regular o irregular de acuerdo con 2.2. Con fines de diseño de una estructura con disipadores de energía, un sistema estructural fuertemente irregular se considera como irregular.

Los elementos estructurales que componen un sistema estructural con disipadores de energía deberán diseñarse para las acciones de diseño obtenidas con el método de análisis estructural que aplique según 12.2.1, bajo la consideración de las acciones mínimas de diseño indicadas en la tabla 12.1.2 y las combinaciones de carga indicadas en 12.1.2.4.

turales con disipadores de energía

Nota: Se considera como irregular las estructuras irregulares y muy Irregulares. La distorsión límite se toma de las Tablas 4.3.1 y 4.3.2

12.2.2.2 *Desplazamientos y distorsiones*

Para la revisión del nivel de desempeño de Ocupación Inmediata, se revisará de acuerdo con lo indicado 12.1.3.3.3 las distorsiones obtenidas con las fuerzas laterales calculadas conforme a 12.2.2.3.

12.2.2.3 Cortante basal y fuerzas laterales

El sistema estructural debe diseñarse para resistir un cortante basal Vbp igual a:

$$V_{bD} = \frac{S_a(T, Q = 1, \zeta = \zeta_a)}{R'} W_0 \ge k_a \frac{S_a(T, Q = 1, \zeta = 0.05)}{R'} W_0$$
(12.2.1)

donde $S_a(T, Q = 1, \zeta = \zeta_e)$ es la ordenada espectral elástica de seudo-aceleración que se obtiene para el amortiguamiento equivalente ζ_e de acuerdo con 3.1, $S_a(T, Q = 1, \zeta = 0.05)$ es la ordenada espectral elástica de seudo-aceleración que se obtiene para un amortiguamiento de 0.05 de acuerdo con la misma sección, k_d es igual a 0.5 para el caso de disipadores con comportamiento lineal, e igual a 0.3 para el caso de disipadores con comportamiento no lineal, R' el factor de reducción por sobre-resistencia que se obtiene de acuerdo con 3.3, y Wo es el peso total del edificio al nivel del desplante. El valor de Zo se establece, bajo la consideración de la contribución de todos los disipadores de energía, por medio de ponderar el amortiguamiento determinado para cada disipador para los desplazamientos laterales de diseño, en función de la rigidez secante del disipador correspondiente a ese desplazamiento. En caso de disipadores que no exhiban rigidez, la ponderación se hace en función de la fuerza máxima que desarrollan.

έ,

Fracción equivalente de amortiguamiento que exhibe un disipador de energía para un desplazamiento lateral de interés. Se calcula como:

 $\zeta_e = \frac{2\pi}{\pi K_e (d^+ - d^-)^2}$

donde d es el desplazamiento que desarrolla el disipador; d⁺ y d⁻ son, respectivamente, los valores máximo y mínimo del desplazamiento en el ciclo de carga; K, es la rigidez efectiva del disipador; y H es la energía disipada en el ciclo histerético delimitado por los desplazamientos d⁺ y d⁻.

12.2.1 Selección del procedimiento

12.2.1.1 Requisitos para análisis estático

Se podrá usar un análisis estático con fines de diseño cuando se cumpla con lo siguiente:

- a) La superestructura cumple con los requisitos de altura de 6.2
- b) La respuesta del sistema estructural total está dominada por su modo fundamental de vibrar
- c) El amortiguamiento equivalente del modo fundamental de vibrar en la dirección de interés no es mayor que 0.30
- d) La estructura es regular según lo indicado en 12.1.3.3.1.

Comentario: Aunque el método estático no sea aplicable en todos los casos para establecer las acciones de diseño del sistema estructural con disipadores de energía, debe llevarse a cabo ya que, con base en él se establecen, de acuerdo con lo indicado en la tabla 12.1.2, valores mínimos para las acciones de diseño.

12.2.1.2 Requisitos para análisis modal espectral

Se podrá analizar la estructura equipada con disipadores, con fines de establecer las acciones de diseño, con el análisis dinámico modal espectral de 7.2 cuando se cumpla con los requisitos c) y d) indicados en 12.2.1.1.

12.2.1.3 Requisitos para análisis dinámico paso a paso

Se podrá analizar cualquier sistema estructural con disipadores de energía con fines de diseño con los métodos de análisis dinámico paso a paso de 7.3 y 7.4. Independientemente del método usado con fines de diseño, se deberá revisar el sistema estructural con una evaluación basada en desempeño de acuerdo con el Capítulo 14.

12.2.4 Análisis dinámico paso a paso

Independientemente del tipo de análisis que se utilice durante la etapa de diseño, siempre deben llevarse a cabo análisis dinámicos paso a paso de acuerdo con lo indicado en 7.3 y 7.4, para verificar el sistema estructural con disipadores de energía de acuerdo con lo indicado en el Capítulo 14. La evaluación basada en desempeño deberá hacerse para la intensidad sísmica base de diseño.

fundamental de vibrar la dirección de interés no es mayor que 0.30

12.1.3.2.1 Propiedades Mecánicas

Los disipadores de energía deben cumplir los requisitos especificados en este Capítulo, y fabricarse de acuerdo con lo indicado en el Apéndice B. Las propiedades mecánicas usadas para modelar los disipadores de energía con fines de análisis deben verificarse con pruebas experimentales de acuerdo con lo indicado en dicho Apéndice.

Conforme a lo indicado en el Apéndice B, se requiere que la capacidad última de deformación de los disipadores de energía sea mayor en 20 por ciento que la requerida por los análisis, y que estos sean capaces de resistir las fuerzas internas que desarrollen para esa condición combinadas con aquellas que resulten de acciones diferentes al sismo que puedan afectar el comportamiento del dispositivo.

Para la revisión de la capacidad resistente de disipadores dependientes del desplazamiento y del sistema primario, deberán considerarse la mayor y menor fuerza sísmica de las que resulten de las siguientes tres condiciones:

- a) Las fuerzas internas máxima y mínima en los disipadores estimadas con los análisis para la intensidad sísmica base de diseño
- por los análisis
- c) La fuerza que desarrolla el disipador, estimada con una envolvente de comportamiento establecida de acuerdo con ciento.

La fuerza que desarrolla el disipador, estimada con una envolvente de comportamiento establecida de acuerdo con sus propiedades estructurales esperadas, para una deformación que sea mayor en 20 por ciento que la requerida

sus propiedades estructurales esperadas, para la deformación requerida por los análisis incrementada en 20 por

APÉNDICE B. PROPIEDADES Y CONTROL DE CALIDAD DE DISIPADORES DE ENERGÍA

B.1 Propósito y alcance

Este Apéndice plantea requerimientos para asegurar el buen comportamiento en campo y un adecuado control de calidad durante la fabricación de los disipadores de energía. Se incluyen reglas generales de diseño, así como características requeridas de los materiales con que se fabrican, y requisitos funcionales y procedimientos de ensayo. Se definen objetivos de desempeño y procedimientos para su verificación.

El/la Proyectista debe indicar en las Especificaciones de Diseño la información técnica relevante en cuanto a las propiedades estructurales requeridas para los disipadores de energía y los materiales con que se fabrican, los ensayos requeridos y las excepciones o complementos que deban considerarse en relación con lo indicado en este Apéndice, el programa de inspección y mantenimiento de los dispositivos, y los intervalos de temperaturas de servicio y de diseño.

En el caso de disipadores de energía no cubiertos por este Apéndice, se deben establecer a satisfacción del Instituto requerimientos de ensayo y fabricación de manera clara y completa en las Especificaciones de Diseño. Asimismo, será posible usar para los tipos de disipadores de energía cubiertos por este Apéndice requerimientos de ensayo y fabricación diferentes a los aquí especificados, siempre y cuando queden establecidos de manera clara y completa, a satisfacción del Instituto, en las Especificaciones de Diseño.

Normas técnicas complementarias 2023 (Sismo)

Metodología de prediseño

Metodología de prediseño

Preliminary Design of Low-Rise Buildings Stiffened with Buckling-Restrained Braces by a Displacement-Based Approach

Amador Teran-Gilmore^{a)} and Neftali Virto-Cambray^{b)}

A displacement-based methodology for the preliminary design of a system of buckling-restrained braces is introduced. The methodology applies to the case of low-rise buildings, whose dynamic response is not significantly influenced by global flexural behavior or higher modes. The methodology is applied to the preliminary design of a five-story building located in the Lake Zone of Mexico City. From the evaluation of the global mechanical characteristics of the building and of its seismic performance when subjected to ground motions generated in that zone, it is concluded that the proposed methodology yields an adequate level of seismic design. [DOI: 10.1193/1.3054638]

Ejemplo de prediseño

Datos iniciales del edificio							
Datos del edificio							
nero de pisos Altura del edificio Regularidad del edificio Altura de					entre		
	12	H =	39.7 m	Rg =	Regular	H =	

Geometría de la crujía tipo				
Entrepiso (H)	3.20	m		
Ancho (B)	3.25	m		
Longitud (L)	4.6	m		
del BRB (L _{BRB}):	3.6	m		
de inclinación (α.):	0.78	rad		

$$L_{BRB} \approx 0.8 * \frac{H}{seno(\alpha)}$$

Ductilidad esperada del BRB

 γ = Distorsión de entrepiso

$$\Delta_{x} = \gamma * H \quad ; \quad L = \frac{H}{seno(\alpha)} \quad ; \quad L_{BRB} \approx 0.8 * \frac{H}{seno(\alpha)} \qquad \mu = \frac{E * fk * \gamma}{0.8 * f_{ye}} * \cos(\alpha) * seno(\alpha)$$

$$fk = 1.44$$
 μ

 $u = \Delta_x \cos(\alpha)$

$$\frac{\Delta_{x}\cos(\alpha)}{\frac{A_{c}*f_{ye}}{\frac{EA_{c}}{L}*fk}} \quad \blacksquare \quad \mu = \frac{E*fk*\Delta_{x}\cos(\alpha)}{f_{ye}*L_{BRB}}$$

= 5.92

Según el número de pisos y regularidad en altura del sistema estructural, se asigna un valor de ductilidad global a la edificación:

<i><i>μ</i>ατιστρατιτίασα</i>					
Número de	Factor Ductilidad				
pisos	μ _{BRB} = 2	$\mu_{BRB} = 6$			
5	1.0	1.1			
10	1.0	1.1			
20	1.1	1.2			
30	1.2	1.3			
40+	1.3	1.4			

 $\mu_{max} = \frac{\mu_{BRB}}{factor Ductilidad}$

$$=\theta_{prom} = \frac{\theta_{max}}{factor Distorsion}$$

La distorsión de entrepiso sirve para establecer el umbral de desplazamiento de azotea. Considere que el área del núcleo de las diagonales sigue la distribución en altura de cortantes de entrepiso:

Área distribu	de diagonales ción de corta entrepiso	s <i>sigue</i> ntes de	
μ	factorDistorsion		
	Regular	Irregular	
1	1.2	1.5	
2+	1.2	1.5	

Área de distribu	e diagonales <i>r</i> ción de corta entrepiso	ntes de
μ	factorDistorsion	
	Regular	Irregular
1	1.2	1.5
2+	1.5	2.0

Sismo de Diseño

Sismo de Diseño

 $factorMDOF = \frac{daz_{max}}{dax}$ d_{1GL}

Es necesario corregir el desplazamiento de azotea (sistema de varios grados de libertad) antes de entrar al espectro de desplazamientos (sistemas de un grado de libertad):

Número de pisos	factorMD0F		
	μ = 1	μ = 2 +	
1	1.0	1.0	
2	1.2	1.1	
3	1.3	1.2	
5+	1.4	1.2	

$$d_{1GL} = 27$$

7.6 cm

Procesado de acelerogramas

DAMPO

Escalado de acelerogramas

Espectros de respuesta elástico

Espectros de respuesta a ductilidad constante

Espectros de respuesta a ductilidad constante con rigidez post-fluencia

Modelado de BRB

	rty Name	BRB	03.50/140_DAMPO	P-Delta P	arameters		Modify/Show
Link Type		Plas	tic (Wen) 🗸 🗸	Acceptan	ce Criteria		Modify/Show
Link Proper	ink Property Notes Modify/Show Notes					None specified	
Total Mass an	d Weight						
Mass		676.8	39 kg	Rota	tional Inerti	a 1	0 tonf
Weight		0.677	712 tonf	Rota	tional Inerti	a 2	0 tonf
				Rota	tional Inerti	a 3	0 tonf
Factors for Lin	e and Are	a Springs					
Link/Suppo	ort Proper	ty is Defined	for This Length When Used in	a Line Spring Prop	erty		0.1 m
Link/Suppo	ort Proper	ty is Defined	for This Area When Used in an	Area Spring Prop	erty		0.1 m ²
Directional Pro	perties						
Direction	Fixed	NonLinear	Properties	Direction	Fixed	NonLinea	r Properties
✓ U1			Modify/Show for U1	🗌 R1			Modify/Show for R1
U2			Modify/Show for U2	R2			Modify/Show for R2
🗌 U3			Modify/Show for U3	🗌 R3			Modify/Show for R3
			Fix All	Clear All			
				Cical Ai			
Stiffness Optio	ns			Eff	ective Stiff	ness from Z	Zero, Else Nonlinear 💦 🚿
Stiffness Optio Stiffness Us	ins sed for Lir	near and Moo	dal Load Cases			(1/0)	`
Stiffness Optio Stiffness Us Stiffness Us	ins sed for Lii sed for St	near and Mor iffness-propo	dal Load Cases rtional Viscous Damping	Init	ial Stiffnes	s (KU)	
Stiffness Optio Stiffness Us Stiffness Us Stiffness-pr	ns sed for Li sed for St oportiona	near and Mo iffness-propo I Viscous Da	dal Load Cases rtional Viscous Damping mping Coefficient Modification F	Init actor	ial Stiffnes	s (NU)	1

Identification	
Property Name	BRB 03.50/140_DAMPO
Direction	U1
Туре	Plastic (Wen)
NonLinear	Yes
Linear Properties	
Effective Stiffness	42.07531 tonf/mm
Effective Damping	0 tonf-s/mm
Nonlinear Properties	
Stiffness	42.07531 tonf/mm
Yield Strength	154 tonf
Post Yield Stiffness Ratio	0.016
Yielding Exponent	3
OK	Canad

Modelo numérico

 $T_1 = 0.92 \text{ s}$

i Gracias!

Engineering, technology & infrastructure.

55-29-55-57-59

ernesto.garcia@dampo.com.mx

www.dampo.com.mx

